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Abstract—Cytotoxicity-guided fractionation of an extract of the South African marine ascidian Pseudodistoma sp. provided pseudo-
distamine (1), a new bis alkyl amine, two new aliphatic amines 2 and 3, and a new B-carboline alkaloid 4. The structures of compounds
1-4 were elucidated by spectroscopic methods and by comparison with spectral data from structurally related compounds. The absolute
stereochemistry of 1 was assigned by Mosher’s ester analyses, while the stereochemistry of 2 and 3 was established by degradation and
derivatization studies. Compound 2 demonstrated cytotoxic activity against four different human tumor cell lines, with an ICs, of approxi-

mately 6.0 wg/mL. Published by Elsevier Science Ltd.

Previous chemical investigations of ascidians in the genus
Pseudodistoma (family Polyclinidae) have led to the
isolation of piperidine,'™ indole,’ and B-carboline®
alkaloids as well as a series of aliphatic amines’ and
amino alcohols.*’ Some of these metabolites have been
reported to exhibit antimicrobial,”® cytotoxic,l’7 or DNA
damage-inducing activities.* The present study was initiated
when an extract of Pseudodistoma sp. collected from Algoa
Bay, South Africa exhibited cytotoxic activity in the US
National Cancer Institute’s (NCI) 60-cell antitumor
screen.'”!! Bioassay-guided fractionation of the extract
provided a series of new nitrogenous constituents including
pseudodistamine (1), two unsaturated aliphatic amines 2—3,
and a quaternary N-methylated 3-carbolinium alkaloid 4.
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The cytotoxic CH,Cl,—MeOH extract (2.6 g) of the colonial
ascidian Pseudodistoma sp. was initiallg separated by a
solvent—solvent partitioning protocol.'* The resulting
aqueous partition fraction was purified by a combination
of LH-20 chromatography and C;3 HPLC to give
compounds 1 (2 mg), 3 (1 mg), and 4 (2 mg). Fractionation
of the CHCIj; soluble partition fraction on LH-20 eluted with
hexane—CH,Cl,—MeOH (2:5:1) provided pure compound 2
(13 mg).

The HRFABMS of pseudodistamine (1) gave a pseudo-
molecular ion (M+H)™ at m/z 240.2325, which established
its molecular formula as C;sH,oNO. The '*C NMR spectrum
displayed 15 carbon resonances, while data from DEPT
experiments indicated the presence of 2 methyls, 4 olefinic
methines, an oxygenated methine, and 8 methylene carbons.
The carbon chemical shifts of two of the methylenes, which
resonated at 6 46.1 and 42.3, indicated they were attached to
nitrogen. The '"H NMR spectrum of 1 contained signals
appropriate for a conjugated diene (8 6.40, 6.10, 5.85, and
5.60), and large vicinal couplings (/=15 Hz) between the
olefinic protons established that the geometry of both double
bonds was trans. COSY and TOCSY correlations revealed
that the & 5.60 olefin proton (H-3’) was coupled to the
nitrogen substituted methylene protons at & 3.55 (H,-2),
while the 8 5.85 olefinic proton (H-6') was adjacent to a
—CH,CH,CH; group. Thus, one structural component of
pseudodistamine (1) consisted of a nitrogen-substituted
A**-(E,E)-octadiene moiety. COSY correlations within the
remaining portion of 1 indicated that the protons on the
other nitrogen-bearing methylene group (6 3.01 and 2.75)
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Figure 1. '"H NMR A8 (85— 8) values (in Hz) obtained for the Mosher’s
esters of 1.

were coupled with the oxymethine proton at 6 3.73, which
in turn was coupled with a pair of methylene protons
centered at 0 1.48. TOCSY data also established that
there was a series of three contiguous methylenes and a
terminal methyl group in 1. This allowed assignment of
the second substituent on nitrogen as a 2-hydroxyheptyl
group. A comprehensive set of HMBC correlations verified
the structure proposed for pseudodistamine (1). The con-
figuration of the hydroxylated C-3 carbon was established
by analysis of "H NMR data from the Mosher’s MTPA ester
derivatives of 1.”*""> The A8 (85— &) values obtained with
these derivatives (Fig. 1) allowed assignment of R absolute
stereochemistry at C-3. While many examples of cyclic and
acyclic alkyl amines and amino alcohols have been
described from natural sources, pseudodistamine (1) repre-
sents a novel type of bis alkyl amine in which C; and Cg
aliphatic chains are joined via a secondary nitrogen atom.

Compound 2 was isolated as an optically active oil and its
molecular formula was established as C;4H»;N by HREIMS
measurements. This molecular formula was isomeric with
(3E,5Z)-tetradeca-3,5-diene-2-amine, a lipid constituent
previously reported from a New Zealand collection of
Pseudodistoma novaezelandiae.” The 'H NMR spectral
data of 2 confirmed that it was closely related to this P.
novaezelandiae metabolite. However, coupling constant
analysis of the olefinic protons in 2 (6 6.34, 1H, dd,
J=15.0, 10.0 Hz, H-4; 6 6.07, 1H, dd, J=15.0, 10.0 Hz,
H-5; 6 5.83, 1H, dt, /=15.0, 7.0 Hz, H-6; 6 5.55, 1H, dd,
J=15.0, 7.0 Hz, H-3) clearly indicated the presence of two
trans double bonds. Data from '*C NMR and DEPT experi-
ments revealed the presence of 2 methyls, 7 methylenes, 4
olefinic methines and 1 methine bearing an amino con-
stituent. Two deuterium-exchangeable NH protons were
observed as a two proton broad singlet at § 8.95 when the
'"H NMR spectrum of 2 was recorded in C4Dg. The methine
proton resonance at & 3.89 showed an HSQC correlation
with a carbon at & 50.3, which was consistent with the
presence of a nitrogen substituent at this position. COSY
correlations established that the amino methine proton was
coupled to a terminal methyl group and to the C-3 olefinic
proton. We were thus able to assign the structure of 2 as
(3E,5E)-tetradeca-3,5,-diene-2-amine. The absolute stereo-
chemistry of the lone chiral center at C-2 was established by
ozonolysis of 2, derivatization of the resulting alanine with
Marfey’s reagent, N-(3-fluoro-4,6-dinitrophenyl)-L-alanina-
mide (FDAA),'® and then LC-MS comparison with FDAA
derivatized D- and L-alanine standards. The FDAA deriva-
tive of alanine from 2 co-eluted with the FDAA derivative
of p-alanine, therefore the stereochemistry at C-2 was
assigned as R.

The molecular formula of compound 3, defined as C;¢Hy;N
by HRFABMS analysis, required four double bond
equivalents in the molecule. The 'H and ?C NMR spectra

of 3 contained signals which were nearly identical to reso-
nances observed in the C-1 to C-6 portion of compound 2,
which indicated they shared this structural fragment. Two
additional disubstituted olefins were evident from the NMR
data for 3, and a two-proton broad triplet at 6 2.76 indicated
that these olefins were separated by a bis allylic methylene
group. The location of these double bonds was established
by COSY correlations between the C-16 terminal methyl
protons at 6 0.96 and the C-15 allylic methylene protons,
which in turn were coupled with the C-14 olefin proton at &
5.38. HMBC correlations from H3-16 to both C-15 (6 21.5)
and C-14 (6 132.6) and from H,-12 to the carbon resonances
in both adjacent olefins supported the presence of A'*'
unsaturations in 3. Assignment of Z geometries of these
two double bonds was based on the upfield chemical shifts
observed for C-15, C-12 (6 26.3) and C-9 (27.6), and by
analogy with similar allylic methylene carbons of cis olefins
previously reported in the Pseudodistoma crucigaster
metabolite crucigasterin 227.° Additional HMBC corre-
lations from H,-8 to C-10 (6 130.4), C-9, and C-6 (&
138.4) linked the two terminal portions of the molecule,
and thus the structure of compound 3 was identified as
(3E,5E,10Z,13Z)-hexadeca-3,5,10,13-tetraene-2-amine. The
stereochemistry at C-2 was assigned as R based on the
results from an ozonolysis and FDAA analysis of the degra-
dation products, similar to that described above for 2.

Compound 4 was optically inactive and HRFABMS analy-
sis provided a [M]" ion which established its molecular
formula as C;,H;;N,O. This formula required the presence
of a quaternary nitrogen atom and nine degrees of unsatura-
tion in the molecule. Its UV spectrum with A, values at
389, 317, 268, and 228 nm was suggestive of a 3-carboline
moiety,”’18 which would account for all of the unsaturation
equivalents in 4. The IR spectrum displayed a broad band
(3400-3200 cm™') which suggested the presence of
hydroxyl and NH functionalities. The '"H NMR spectrum
of compound 4 recorded in CD;0D revealed two mutually
coupled doublets (J=5.0 Hz) at 6 8.43 and 8.59 which could
be assigned to H-3 and H-4, respectively, while a broad
signal at 6 9.07 (1H) was attributed to H-1. A three-proton
spin system provided signals at 6§ 7.15 (1H, d, /==8.0 Hz),
7.27 (1H, t, J/=8.0 Hz) and 7.84 (1H, d, /==8.0 Hz) which
were determined to be H-7, H-6, and H-5, respectively.
Placement of the H-5 resonance was supported by its char-
acteristic downfield chemical shift,*'* and by a strong NOE
interaction that was observed with H-4. A three-proton
singlet at 6 4.51 which had an HSQC correlation to a carbon
at 6 48.5 was attributable to a quaternary N-Me group. H-1
and H-3 each exhibited significant NOE interactions with
the N-methyl protons and they both had HMBC correlations
with the N-methyl carbon resonance. The methyl could thus
be placed at N-2, which must be a quaternary nitrogen. The
chemical shift of C-8 (6 145.8) indicated that it was attached
to oxygen and it exhibited HMBC correlations with both
H-6 and H-7. When the 'H NMR spectrum of 4 was
acquired in DMSO-dq, OH-8 was observed at 6 10.70 and
it showed an NOE interaction with H-7 which confirmed its
location. NOE interactions were also observed between
the NH-9 proton at 6 12.83 and H-1. Thus, compound 4
was characterized as 8-hydroxy-2-methyl-B-carbolinium
alkaloid (Fig. 2). While quaternary [3-carbolines have
been reported from terrestrial plants of the genera
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Figure 2. Arrows indicate key NOE interactions in 4.

Desmodium,zo’23 Hedyotis,24 and Snychnos,25 the only other
[B-carbolinium alkaloid from a marine source was recently
described from the soft coral Lignopsis spongiosum.*

Compounds 1-4 were evaluated for cytotoxic properties in
a 2-day in vitro assay.”” The ICs, value for 2 against the
LOX (melanoma), A549 (non-small cell lung), SNB-19
(CNS), and OVCAR-3 (ovarian) human tumor cell lines
was approximately 6.0 pg/mL. Compounds 1, 3, and 4
were inactive in this assay at a high-test concentration of
20 pg/mL.

1. Experimental
1.1. General experimental procedures

HPLC was performed on a Varian—Rainin system employ-
ing a Dynamax C;g column (1X25 cm), using a flow rate of
3 mL/min and UV detection at 220 nm. Optical rotations
were measured with a Perkin—Elmer 241 polarimeter. Ultra-
violet (UV) and infrared (IR) spectra were obtained on a
Beckman DU-640 and Perkin—Elmer 1600 FTIR spectro-
meter, respectively. The 'H (500 MHz) and '*C (125 MHz)
NMR spectra were recorded in CD;0D, C¢Dg, or DMSO-dg
on a Varian INOVA 500 spectrometer and the chemical
shifts are reported in ppm relative to the residual non-
deuterated solvents. Multiplicities for the '*C resonances
were established from DEPT experiments. Inverse detected
heteronuclear correlations were measured using HSQC
(optimized for 'Jen=140 Hz) and HMBC (optimized for
"Joy=8.5 and 3.5 Hz) pulse sequences. High-resolution
mass spectra were acquired on a JEOL SX102 mass spectro-
meter.

1.2. Animal materials

Samples of the ascidian Pseudodistoma sp. were
collected from Algoa Bay, South Africa in November
1992 by the Coral Reef Research Foundation and subse-
quently identified by S. Parker-Nance. A voucher specimen
(# OCDNG6128) for this collection is maintained at the
Smithsonian Institution, Washington, DC.

1.3. Extraction and isolation

The frozen ascidian (78.8 g) was ground to a fine powder,
extracted with H,O to give an aqueous extract and then
sequentially extracted with CH,Cl,—MeOH (1:1) followed
by MeOH (100%). The combined organic extracts were
evaporated in vacuo to provide 2.56 g of residue which
was subjected to a four step solvent—solvent partitioning
protocol.'? Cytotoxic activity was concentrated into both

the CHCI; soluble material (159 mg) and the aqueous
soluble fraction (86 mg). The CHCl; soluble material was
separated by gel permeation chromatography on a Sephadex
LH-20 column (2.5%X100cm) eluted with n-hexane—
CH,Cl,-MeOH (2:5:1). One of the fractions (23 mg)
contained a 1:1 mixture of compounds 2 and 3, as evident
from its "H NMR spectrum, while a later eluting fraction
afforded pure 2 (13.4 mg). The aqueous partition fraction
was chromatographed on Sephadex LH-20 (1.5X100 cm)
eluted with MeCN-MeOH (1:1) and finally purified by
C;s HPLC using an isocratic 6:4 mixture of MeCN and
0.1% aqueous TFA to give pseudodistamine 1 (2.0 mg),
compound 3 (1.0 mg) and B-carboline 4 (2.0 mg).

1.3.1. Pseudodistamine (1). Colorless gum; [a]p=—3.0°
(c=0.1, MeOH); UV (MeOH) A, (log &) 225 (3.72) nm;
IR (film) v, 3400-3085, 3000-2850, 1636, 1507, 1440,
1194, 1141, 992 cm™'; 'H (500 MHz, CD;0D) 6§ 6.40 (1H,
dd, J=15.0, 10.0 Hz, H-4), 6.10 (1H, dd, J=15.0, 10.0 Hz,
H-57), 5.85 (1H, dt, J=15.0, 7.0 Hz, H-6"), 5.60 (1H, dd,
J=15.0, 7.0 Hz, H-3"), 3.73 (1H, m, H-3), 3.55 (2H, d,
J=7.0Hz, H-2"), 3.01 (1H, dd, J=13.0, 3.0 Hz, H-2a),
2.75 (1H, dd, J=13.0, 9.5Hz, H-2b), 2.12 (2H, q,
J=7.0Hz, H-7'), 1.48 (2H, m, H-4), 1.41 (2H, m, H,-5)
1.34 (4H, m, H,-8' and H,-7), 1.31 (2H, m, H,-6); 0.91
(6H, t, J=7.0 Hz, H5-9' and H;-8); 3C NMR (125 MHz,
CD;0D) 6 139.1 (d, C-6"), 138.5 (d, C-4"), 130.1 (d, C-
5", 121.9 (d, C-37), 68.8 (d, C-3), 46.1 (t, C-2), 42.3 (t, C-
2N, 36.0 (t, C-4), 33.6 (t, C-7"), 33.0 (t, C-6), 30.4 (t, C-8"),
26.4 (t, C-5), 23.7 (t, C-7), 144 (2C, q, C-9’ and C-8);
HRFABMS obs. [M+H]" m/z 240.2325 (calcd 240.2327
for C]ngoNO)

1.3.2. (3E,5E)-Tetradeca-3,5-diene-2R-amine (2). Color-
less oil; [a]p=—1.2° (¢=0.25, MeOH); UV (MeOH) A .«
(log &) 229 (4.24) nm; IR (film) v, 3330, 3000-2800,
1606, 1508, 1461, 990 cm™'; 'H (500 MHz, CD;0D) &
6.34 (1H, dd, J=15.0, 10.0 Hz, H-4), 6.07 (1H, dd,
J=15.0, 10.0 Hz, H-5), 5.83 (l1H, dt, J=15.0, 7.0 Hz,
H-6), 5.55 (1H, dd, J=15.0, 7.0 Hz, H-3), 3.89 (1H, pent,
J=17.0 Hz, H-2), 2.10 (2H, q, J=7.0 Hz, H-7), 1.38 (3H, d,
J=7.0 Hz, H-1), 1.29 (8H, m), 1.28 (2H, m, H-13), 1.27
(2H, m, H-12), 0.89 (3H, t, J=7.0Hz, H-14); 'H
(500 MHz, C¢Dg) & 8.95 (2H, bs, NH,), 6.35 (1H, dd,
J=15.0, 10.0 Hz, H-4), 5.98 (1H, dd, J=15.0, 10.0 Hz,
H-5), 5.87 (I1H, dd, J=15.0, 7.0 Hz, H-3), 5.71 (1H, dt,
J=15.0, 7.0 Hz, H-6), 3.90 (1H, m, H-2), 2.01 (2H, q,
J=7.0 Hz, H-7), 1.58 (3H, d, J=6.0 Hz, H-1), 1.28-1.32
(12H, m), 093 (3H, t, J=7.0Hz, H-14); “C NMR
(125 MHz, CD;0D) & 139.1 (d, C-6), 135.9 (d, C-4),
130.1 (d, C-5), 127.8 (d, C-3), 50.3 (d, C-2), 33.6 (t, C-7),
33.0 (t, C-12), 30.5 (t), 30.4 (t), 30.24 (1), 30.21 (t), 23.7 (t,
C-13),19.6 (q, C-1), 14.4 (g, C-14); HREIMS obs. [M]" m/z
209.2150 (caled 209.2144 for C;4HN).

1.3.3. (3E,5E,10Z,13Z)-Hexadeca-3,5,10,13-tetraene-2R-
amine (3). Colorless oil; [a]p=—6° (¢c=0.05, MeOH); UV
(MeOH) A« (log &) 229 (3.38) nm; IR (film) v, 3380,
30002850, 1560, 1442, 1208, 1139, 991cm '; 'H
(500 MHz, CD;0OD) 6 6.35 (1H, dd, J=15.0, 10.0 Hz,
H-4), 6.07 (1H, dd, J=15.0, 10.0 Hz, H-5), 5.84 (1H, dt,
J=15.0, 7.0 Hz, H-6), 5.54 (1H, dd, J=15.0, 7.0 Hz, H-3),
5.38 (1H, m, H-14), 5.34 (3H, m, H-10, H-11, H-13), 3.87
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(1H, pent, J=7.0 Hz, H-2), 2.76 (2H, bt, J=6.5 Hz, H-12),
2.05-2.12 (6H, m, H-7, H-9, H-15), 1.48 (2H, m, H-8), 1.37
(3H, d, J=7.0 Hz, H-1), 0.96 (3H, t, J=7.5 Hz, H-16); '*C
NMR (125 MHz, CD;0D) & 138.4 (d, C-6), 135.6 (d, C-4),
132.6 (d, C-14), 130.4 (3C, d, C-10, C-11, and C-13), 130.2
(d, C-5), 128.3 (d, C-3), 50.3 (d, C-2), 33.2 (t, C-7), 30.2 (t,
C-8), 27.6 (t, C-9), 26.3 (t, C-12), 21.5 (t, C-15), 19.7 (q,
C-1), 14.6 (g, C-16); CIMS [M+H]" m/z 234; HRFABMS
obs. [M+H]" m/z 234.2217 (caled 234.2222 for C,sHgN).

1.3.4. 8-Hydroxy-2-methyl-B-carboline (4). Colorless
gum; UV (MeOH) A, (log &) 228 (3.63), 268 (3.56),
317 (3.23), 389 (2.70)nm; IR (film) v, 3400-3200,
1640, 1592, 1286, 841, 800 cm™'; '"H NMR (500 MHz,
CD;OD) & 9.07 (1H, s, H-1), 8.59 (1H, d, J=5.0 Hz,
H-4), 8.43 (1H, d, J=5.0 Hz, H-3), 7.84 (1H, d, J=8.0 Hz,
H-5), 7.27 (14, t, J=8.0 Hz, H-6), 7.15 (1H, d, J=8.0 Hz,
H-7),4.51 (3H, s, N-Me); 'H NMR (500 MHz, DMSO-dy) &
12.83 (1H, bs, NH), 10.70 (1H, s, OH-8), 9.18, (1H, s, H-1),
8.72 (1H, d, J=6.0 Hz, H-4), 8.58 (1H, d, J=6.0 Hz, H-3),
7.89 (1H, d, J=8.0 Hz, H-5), 7.25 (1H, t, J=8.0 Hz, H-6),
7.17 (1H, d, J=8.0 Hz, H-7), 4.51 (3H, s, N-Me); 1*C NMR
(125 MHz, CD;0D) & 145.8 (s, C-8), 136.7 (s, C-8a), 134.8
(s, C-9a), 133.9 (d, C-3), 131.1 (d, C-1), 127.7 (s, C-4a),
124.1 (d, C-6), 122.5 (s, C-4b), 118.8 (d, C-4), 116.1 (d,
C-7), 114.5 (d, C-5), 48.5 (g, N-Me); *C NMR (125 MHz,
DMSO-dg) 8 144.3 (s, C-8), 134.7 (s, C-9a), 134.3 (s, C-8a),
133.0 (d, C-3), 132.3 (s, C-4a), 130.3 (d, C-1), 122.4 (d,
C-6), 120.7 (s, C-4b), 117.6 (d, C-4), 114.7 (d, C-7),
113.5 (d, C-5), 47.3 (g, N-Me); HRFABMS m/z 199.0873
[M]" (caled 199.0871 for C;,H,,ONy).

1.4. Mosher’s analysis of pseudodistamine (1)'*-!3

A solution of (R)-a-methoxy-a-(trifluoromethyl)phenyl-
acetic acid chloride, R-(—)-MTPA-CI, (1.0 mg in 10 pL
of dry pyridine-ds) was added to 0.5 mg of 1 dissolved in
170 p.L of dry pyridine-ds. The reaction mixture was poured
into a dry NMR tube and the course of the reaction was
monitored by recording '"H NMR spectra at the initiation
of the reaction and then after 1, 2, 3, 4 and 24 h. Proton
resonances corresponding to the (§)-MTPA ester of 1 were
clearly distinguished and assigned. The same procedure was
repeated with S-(+)-MTPA-CI to get the corresponding
(R)-MTPA ester of 1. In both cases, the reaction was
completed in 24 h as evidenced by the absence of proton
signals assignable to the starting material.

1.5. Stereochemical determination of compounds 2 and 3

A slow stream of O; was bubbled into a solution of
compound 2 (0.5 mg) in 10 mL of CH,Cl, at room tempera-
ture for 8 min. Solvent was removed under a stream of N,
and the residue was treated with 10 wL 6% triethylamine
dissolved in CH;CN-H,O (1:1) and 5 pL of a 1% solution
of Marfey’s reagent,'® N-(3-fluoro-4,6-dinitrophenyl)-L-
alaninamide (FDAA), in Me,CO for 1 h at 40°C. The reac-
tion mixture was diluted with 15 pwL of H,O and an aliquot
was analyzed by C,;3 HPLC eluted with a linear gradient of
CH;CN in 5% aqueous CH;COOH (from 5 to 50% CH;CN
over 25 min). The FDAA-derivatized alanine was detected
by absorption at 340 nm and by MSD (200-400 Da) and
compared with similarly derivatized D- and L-alanine

standards. The same procedure was followed with the
product obtained from ozonolysis of compound 3. The
retention times for the FDAA derivatized D- and L-alanine
standards were 17.61 and 12.95 min, respectively. The
derivatized alanine residues derived from compounds 2
and 3 eluted at 17.69 min.

1.5.1. Cytotoxicity evaluation. DMSO solutions of chro-
matography fractions and aliquots of the purified
compounds 1-4 were assayed for cytotoxic properties in a
2-day in vitro assay, experimental details of which have
been reported previously.?’
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